On the k-planar local crossing number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On k-planar crossing numbers

The k-planar crossing number of a graph is the minimum number of crossings of its edges over all possible drawings of the graph in k planes. We propose algorithms and methods for k-planar drawings of general graphs together with lower bound techniques. We give exact results for the k-planar crossing number ofK2k+1,q , for k 2.We prove tight bounds for complete graphs.We also study the rectiline...

متن کامل

On the Crossing Number of Almost Planar Graphs

If G is a plane graph and x, y ∈ V (G), then the dual distance of x and y is equal to the minimum number of crossings of G with a closed curve in the plane joining x and y. Riskin [7] proved that if G0 is a 3connected cubic planar graph, and x, y are its vertices at dual distance d, then the crossing number of the graph G0 + xy is equal to d. Riskin asked if his result holds for arbitrary 3-con...

متن کامل

vertex centered crossing number for maximal planar graph

the crossing number of a graph  is the minimum number of edge crossings over all possible drawings of  in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

متن کامل

Crossing and Weighted Crossing Number of Near-Planar Graphs

A nonplanar graph G is near-planar if it contains an edge e such that G− e is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers an...

متن کامل

On the Crossing Number of K{m, n}

The best lower bound known on the crossing number of the complete bipartite graph is : cr(Km,n) ≥ (1/5)(m)(m − 1)bn/2cb(n − 1)/2c In this paper we prove that: cr(Km,n) ≥ (1/5)m(m − 1)bn/2cb(n − 1)/2c + 9.9 × 10−6m2n2 for sufficiently large m and n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2019

ISSN: 0012-365X

DOI: 10.1016/j.disc.2018.11.020